The effect of intraluminal contact mediated guidance signals on axonal mismatch during peripheral nerve repair.
نویسندگان
چکیده
The current microsurgical gold standard for repairing long gap nerve injuries is the autograft. Autograft provides a protective environment for repair and a natural internal architecture, which is essential for regeneration. Current clinically approved hollow nerve guidance conduits allow provision of this protective environment; however they fail to provide an essential internal architecture to the regenerating nerve. In the present study both structured and unstructured intraluminal collagen fibres are investigated to assess their ability to enhance conduit mediated nerve repair. This study presents a direct comparison of both structured and unstructured fibres in vivo. The addition of intraluminal guidance structures was shown to significantly decrease axonal dispersion within the conduit and reduced axonal mismatch of distal nerve targets (p < 0.05). The intraluminal fibres were shown to be successfully incorporated into the host regenerative process, acting as a platform for Schwann cell migration and axonal regeneration. Ultimately the fibres were able to provide a platform for nerve regeneration in a long term regeneration study (16 weeks) and facilitated increased guidance of regenerating axons towards their distal nerve targets.
منابع مشابه
Transplantation of Olfactory Mucosa Improve Functional Recovery and Axonal Regeneration Following Sciatic Nerve Repair in Rats
Background: Olfactory ensheathing glia (OEG) has been shown to have a neuroprotective effect after being transplanted in rats with spinal cord injury. This study was conducted to determine the possible beneficial results of olfactory mucosa transplantation (OMT) which is a source of OEG on functional recovery and axonal regeneration after transection of the sciatic nerve. Methods: In this study...
متن کاملEffect of modulating macrophage phenotype on peripheral nerve repair.
Peripheral nerve repair across long gaps remains clinically challenging despite progress made with autograft transplantation. While scaffolds that present trophic factors and extracellular matrix molecules have been designed, matching the performance of autograft-induced repair has been challenging. In this study, we explored the effect of cytokine mediated 'biasing' of macrophage phenotypes on...
متن کاملThe Healing Effect of Silicone Gel on Sciatic Nerve Injuries in Experimental Rat
BACKGROUND Peripheral nerve repair is often complicated by fibroblastic scar formation, nerve dysfunction, and traumatic neuroma formation. Use of silicone may improve outcomes of these repairs. In this study, we tried to evaluate effectiveness of silicone gel on rats’ sciatic nerve repair, axon regeneration and scar formation around and in the nervous tissues. METHODS This experimental stud...
متن کاملThe Effect of Ultrasound on Acceleration of Peripheral Nerve Injury
Background: Many people suffer from nerve injury. The time consuming nature of the treatments makes the condition worse. Therefore, finding a way to accelerate the process of nerve repair is very important.Objective: To determine the effect of ultrasound on the acceleration of crushed peripheral nerve regeneration.Methods: The experimental model included crushed rat’s sciatic nerve. 40 rats w...
متن کاملEffect of Local Administration of Laminin and Fibronectin with Chitosan Conduit on Peripheral Nerve Regeneration: A Rat Sciatic Nerve Transection Model
Objective-Effect of local administration of laminin and fibronectin on nerve regeneration was assessed. Design- Experimental study. Animal- Sixty male Wistar rats. Procedures- The animals were divided into four experimental groups (n=15), randomly: In transected group left sciatic nerve was transected and stumps were fixed in adjacent muscle. In treatment group (CHIT/LF) the defect was bridg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 33 28 شماره
صفحات -
تاریخ انتشار 2012